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Abstract. We study the short-range correlations in a double-quantum-wire structure within
the self-consistent scheme of Singwi, Tosi, Land, and Sjölander. The local-field factors and
static correlation functions are calculated for electron and electron–hole double-wire systems.
The ground-state energy and collective excitations are discussed. It is found that the interwire
correlations become quite important for electron–hole systems. Comparisons with the random-
phase approximation and Hubbard approximation are made for various calculated quantities.

1. Introduction

The recent progress in fabrication techniques such as molecular beam epitaxy and
lithographic methods has made it possible to study quasi-one-dimensional (Q1D) electron
systems, which occur in semiconducting structures, in which the electrons are confined to
move freely only in one space dimension. Experimental and theoretical work continues to
be a subject of interest, the main motivation coming from their technological potential such
as in high-speed electronic devices and quantum-wire laser applications. Other than the
practical implications, electrons in Q1D structures provide an interesting many-body system
as regards condensed-matter theories. In this paper we study the ground-state correlations
of a double-quantum-wire system at zero temperature. Such structures, analogous to the
double-quantum-well systems recently studied, are important in our understanding of the
correlation effects in low-dimensional systems.

Collective excitations in quantum-wire systems were experimentally studied by
spectroscopic methods [1, 2]. Various theoretical aspects of Q1D structures have been
investigated in connection with GaAs-based materials [3–8]. The remarkable success of
the random-phase approximation (RPA) in interpreting the excitation spectra of quantum
wires is attributed [4, 9] to the limited phase space of Q1D systems. The applicability of
the Fermi-liquid approach (as opposed to the Tomonaga–Luttinger-type picture [10]) to the
semiconducting quantum-wire systems has been discussed in detail [11] with the result that
finite-temperature and disorder effects allow the formation of a well-defined Fermi ‘surface’
in such systems. These predictions are in very good agreement with the experimental
observation [1, 2] of collective excitations in GaAs quantum wires. The ground-state
correlation effects in single quantum wires were explored [12–14] going beyond the random-
phase approximation (RPA). To include corrections due to exchange–correlation effects
associated with the charge fluctuations, the method of Singwi, Tosi, Land, and Sjölander
(STLS) [15] offers a physically motivated improvement over the RPA. Density-functional
and self-consistent methods have also been employed in various calculations [16, 17].

0953-8984/97/143033+10$19.50c© 1997 IOP Publishing Ltd 3033



3034 N Mutluay and B Tanatar

Our chief aim in this paper is to develop the self-consistent scheme of Singwiet
al [15] to calculate exchange–correlation effects in double-quantum-wire systems. We
specialize to equal-density electron and electron–hole (one wire has electrons as charge
carriers whereas the other has holes) systems to study the effects of intra- and interwire
correlations. The presence of additional charges in the second quantum wire enhances the
correlation effects compared with the case of a single wire. Intra- and interwire correlations
are quite different in nature because the charge carriers can only move in their respective
wires (in the absence of tunnelling) and exchange interactions become important. Interwire
correlations increase with decreasing wire separation. The STLS approximation has proved
very useful in double-layer two-dimensional electron gas systems [18–20]. The RPA has
been found to overestimate the static properties. On the other hand, the STLS approximation
is believed to give reliable results if the carrier density is not very low. There is yet another
motivation for considering double-wire systems within the STLS approximation. A charge-
density-wave (CDW) instability in these systems has been predicted [21, 22] to occur, as in
the case of double-quantum-well structures [23]. Being a many-body effect, this instability
requires an accurate description of the local-field corrections in its analysis. In this work
we concentrate on the fully self-consistent evaluation of the static structure factors and
local-field corrections in electron and electron–hole double-wire systems.

The rest of this paper is organized as follows. In section 2 we outline the method
of STLS for the density–density response in a double-wire system. Our numerical results
for the static structure factors, local-field corrections, ground-state energy, and collective
excitations in electron and electron–hole double-wire structures are presented in section 3.
We conclude with a brief summary of our results.

2. Theory

We assume that the Q1D electrons in each wire are embedded in a uniform positive
background to maintain overall charge neutrality. The density–density response function
(matrix) of a double-wire electron (or electron–hole) system in its extension to a multi-
component case is given by [18, 24]

[χ(Q)]−1 =
[

[χ0
11(Q)]

−1− V11(q)[1−G11(q)] −V12(q)[1−G12(q)]
−V21(q)[1−G21(q)] [χ0

22(Q)]
−1− V22(q)[1−G22(q)]

]
(1)

where χ0
ii (Q) is the zero-temperature 1D free-electron [25] density–density response

function for theith wire (in this equation,Q representsq, ω). We use the particle-number-
conserving expression [26]

χ0(q, ω; γ ) = (ω + iγ )χ0(q, ω + iγ )

ω + iγ [χ0(q, ω + iγ )/χ0(q, 0)]
(2)

to account for the disorder effects through the phenomenological parameterγ , in order to
justify the use of the Fermi-liquid approach in Q1D electron systems. The fluctuation-
dissipation theorem enables us to express the static structure factorsSij (q) in terms of the
response functions:

Sij (q) = − 1

nπ

∫ ∞
0

dω χij (q, iω) (3)

where the frequency integration is to be performed along the imaginary axis to better capture
the contribution from collective modes [27]. The handling of the plasmon contribution
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becomes important for Q1D systems since the collective modes do not undergo Landau
damping, and exist over a large range ofq-values. TheGij (q) are the static local-field
factors arising from the short-range Coulomb correlations and the exchange–correlation
effects for the density–density responses. SettingGij = 0 in the density–density response
matrix, one recovers the RPA. The choice ofGij (q) in the approximation scheme of STLS
depends on anansatzwhich decouples the two-particle distribution function into a product
of two one-particle distribution functions multiplied by the pair-correlation function. They
are given by [12, 14, 15]

Gij (q) = −1

n

∫ ∞
−∞

dk

2π

kVij (k)

qVij (q)
[Sij (q − k)− δij ] (4)

wheren is the linear electron density assumed to be the same for both wires. In terms
of the Fermi wave-vector we haven = 2kF /π . The electron gas parameter is defined as
rs = π/(4kF a∗B), in whicha∗B = ε0/(e

2m∗) is the effective Bohr radius in the semiconducting
wire with background dielectric constantε0 and electron effective massm∗.

The model that we use in our calculation for the Q1D electron system was developed
by Gold and Ghazali [6]. It consists of two cylindrical quantum wires of radiusR each in
an infinite potential well and separated by a distanced (d > 2R). We assume that only the
lowest subband in each given quantum wire is occupied. The intra- and interwire Coulomb
interactions between particles in their lowest subbands within this model are given by [6, 21]

V11(q) = e2

2ε0

144

(qR)2

[
1

10
− 2

3(qR)2
+ 32

3(qR)4
− 64

I3(qR)K3(qR)

(qR)4

]
(5)

V12(q) = e2

2ε0
(96)2

[
I3(qR)

(qR)3

]2

K0(qd) (6)

respectively, whereIn(x) andKn(x) are the modified Bessel functions. Notable features of
the Gold and Ghazali [6, 21] model are that the intrawire potential behaves as∼|ln(qR)|
for long wavelengths and the interwire potential as∼|ln(qd)|, characteristic of various
other models. The quantum-wire model used in a Q1D structure determines the Coulomb
interaction potential and some asymptotic properties of the local-field factor as discussed by
Fantoni and Tosi [28]. Although the realistic quantum wires are far from being spherical
in cross-section, and never have infinite barriers, the present model serves as a convenient
example of coupled-wire geometry.

The ground-state energy (per particle) of the double-wire electron system is expressed
as the sum of kinetic energy and exchange–correlation energy parts. The kinetic energy
contribution is simplyT = π2/(24r2

s ) Ryd∗, where the ‘effective rydberg’ energy unit is
defined as 1 Ryd∗ = e2/(2ε0a

∗
B). We use the standard manipulations related to the ground-

state-energy theorem of Pauli to express the exchange–correlation energy as

Exc = − 1

8r2
s

∑
ij

∫ r ′s

0
dr ′s γij (r

′
s) (7)

where

γij (rs) = − 2ε0

e2kF

∫ ∞
0

dq Vij [Sij (q; rs)− δij ] (8)

in which the self-consistent values of the static structure factorsSij (q) are used. Extension
of the above formalism to a system in which one of the quantum wires has holes for charge
carriers requires only straightforward modifications.
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3. Results and discussion

We solve the above set of equations (equations (1)–(4)) that describe the structure factors
and local-field corrections for the density–density response in a double-wire system (both
for the electron and electron–hole cases) self-consistently. The numerical accuracy attained
is typically 0.01%. Material parameters appropriate for GaAs-based structures are used
so thatm∗ = 0.07me (me is the free-electron mass) andε0 = 12.9. In the electron–hole
double wires we take the electron and hole effective mass ratiom∗e/m

∗
h = 0.134, which

corresponds tom∗h = 0.5me. Furthermore, in the case of the coupled electron–hole double-
wire system we take a single hole band. The method that we use may be generalized to
include valence-band degeneracy effects at the expense of a heavy computational effort.
The phenomenological disorder parameterγ that we use in the density–density response
function does not influence the convergedSij (q) andGij (q) significantly forγ . 0.1EF ,
except that the fluctuation-dissipation integral in equation (3) becomes free of singularity at
q = 2kF . As the broadening parameterγ becomes comparable toEF , noticeable effects on
Sij (q) andGij (q) start to occur. In this work we limit our calculations to the case where
γ = 0.01EF . We mention that the particle-number-conserving expression that we use has
the same form as in more sophisticated approaches, where it is replaced by the wave-vector-
and frequency-dependent memory function [29]γ (q, ω). The phenomenologicalγ may be
related to the measured mobilities in quantum wires by the usual relaxation-time expression.

Figure 1. The structure factorS11(q) in a double-wire
electron system atrs = 2, R = 2a∗B , and d = 5a∗B ,
in the STLS (solid), and the Hubbard approximations
(dashed), and in the RPA (dotted).

Figure 2. The intrawire and interwire local-field factors
G11(q) (upper curves) andG12(q) (lower curves) for
a double-wire electron system withR = 2a∗B and
d = 5a∗B . In both cases, the dotted, short-dashed, dot-
dashed, long-dashed, and solid lines are forrs = 0.1,
1, 2, 3, and 4, respectively.

We first discuss our results for the double-wire electron system. The intrawire static
structure factorS11(q), for small rs , resembles the noninteracting structure factor given
by the Hartree–Fock (HF) approximation. As the density is lowered, correlation effects
become more important. We compare different approximations toS11(q) in figure 1 for a
double-wire electron system atrs = 2. The solid, dashed, and dotted lines show the STLS,
and the Hubbard approximations, and the RPA, respectively. The Hubbard approximation
(HA) to the local-field factor is obtained from equation (4) by replacing the static structure
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factor by the HF expression. This yields approximately

Gij (q) = 1

2

Vii(

√
q2+ k2

F )

Vii(q)
δij .

The Hubbard approximation is a simplified attempt to go beyond the RPA in which the Pauli
hole around electrons is taken into account but the correlations are neglected. Note that
theSSTLS(q) shown in figure 1 is considerably different fromSRPA(q) andSHA(q). Similar
behaviours of the static structure factor in Q1D systems have been obtained in various other
calculations [12–14]. The interwire structure factorS12(q) is about an order of magnitude
smaller thanS11(q) and negative in the range ofq-values of interest.

The intrawire local-field factorG11(q) for different densities is shown in figure 2 (upper
curves). Asrs increases, the magnitude ofG11(q) approaches unity for large wave-vectors.
In the opposite limit, asrs → 0, G11(q) exhibits a peak at aroundq = 2kF . We find that
G11 is not very sensitive to the value of the wire separationd, as in the case of double-layer
systems [19]. Our results forG11(q) are in qualitative agreement with the calculations
of Wang and Ruden [22] and single-wire calculations of Friesen and Bergersen [12]. It
should be noted that Wang and Ruden [22] setG12(q) = 0 from the outset, whereas in our
calculations both intra- and interwire components of the local-field factor are determined
self-consistently. Although the simplificationG12 = 0 is justified in electron double-wire
systems, as we shall see later in the electron–hole systemsG12 cannot be neglected because
of the stronger correlations. The interwire local-field factorG12(q) for different densities is
shown in figure 2 (lower curves) where the same double-quantum-wire parameters are used
as in the previous cases. It is to a great extent negligible (except at largers) compared to
G11, and diminishes for large wave-vectors.

The self-consistent local-field corrections and static structure factors for electron–hole

Figure 3. The static structure factorsS11(q) andS12(q)

(lower curves) in a double-wire electron–hole system
for different densities:rs = 1 (solid curve),rs = 2
(dashed curve),rs = 3 (dot-dashed curve), andrs = 4
(dotted curve).

Figure 4. Upper part: the intrawire local-field factors
G11(q) (solid curves) andG22(q) (dashed curves) in
an electron–hole double-wire system withR = 2a∗B
and d = 5a∗B at rs = 2. The dotted line represents
the Hubbard approximation toG(q). Lower part: the
interwire local-field factorG12(q) at different densities:
rs = 1 (solid curve),rs = 2 (dashed curve),rs = 3
(dot-dashed curve), andrs = 4 (dotted curve).
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double-wire systems are calculated in a similar manner to those of an electron system.
The RPA for electron–hole systems is even less reliable because the attractive interwire
interaction has a larger effect than the repulsive interaction. The failure of the RPA is
revealed in the unphysical pair-correlation functions which are partially remedied in the
self-consistent approach [18, 19]. In a multi-component system, the improvements brought
about by the STLS scheme over the RPA are the result of taking multiple scatterings
between electrons and holes into account (albeit in an approximate way). Even though the
carrier densities in two wires are kept the same, the differences in the effective masses
for electrons and holes render the noninteracting response functionsχ0

11 andχ0
22 different.

Consequently, altogether six quantities are determined iteratively. The calculated structure
factorsSij (q) again reveal considerable differences between the self-consistent and RPA
results. In contrast to the electron double-wire system, the interwire structure factorS12(q)

becomes positive. In figure 3 the intra- and interwire static structure factorsS11(q) and
S12(q) are shown for different densities. The intrawire local-field factorsG11(q) andG22(q)

for a double-wire electron–hole system at densityrs = 2 are depicted in the upper part of
figure 4. For comparison we also plot the Hubbard approximation toG(q) (the dotted line).
The interwire componentG12(q) for various densities is shown in the lower part of figure 4.
In an electron–hole double-wire system,G12(q) is predominantly negative.

Figure 5. The ground-state energy of a double-wire electron (thin lines) and electron–hole (thick
lines) systems as a function of density at a wire separation ofd = 5a∗B . The energies in the
STLS approximation (solid curve), HA (dotted curve), and RPA (dashed curve) are compared
for R = 2a∗B wires.

The ground-state energy of a double-wire electron system in different approximations is
displayed in figure 5 (thin lines). All three curves exhibit minima which lie at around
rs ≈ 1.5. The RPA yields an overestimate for the ground-state energy because the
short-range correlation effects are not incorporated. The Hubbard approximation partially
remedies this, butEHA is still below the STLS ground-state energy. Since the interwire
interaction decays exponentially (i.e.,∼e−qd ) for large wave-vectors, the correlation energy
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contribution goes to zero as the wire separationd increases. The ground-state energy then
becomes the sum of two independent wires. Similar behaviour has also been noted for
double-layer electron systems [18, 19]. We find that the ground-state energy does not show
a strong dependence on the wire separation for an equal-density system withR = 2a∗B
and d > 5a∗B . This is mainly because of the weakd-dependence of the local-field factor
G11(q) discussed above. Nevertheless, for very low densities (rs > 5) it might be possible
to have stronger separation distance dependence of the ground-state energies in double-
wire systems. More reliable and elaborate approaches would then be required to study this
regime. The ground-state energy in an electron–hole double-wire structure is also shown
in figure 5 (thick lines). As in the electron double-wire system, the correlation effects are
gradually built in with different approximations. We note that the RPA produces a very
loosely bound system (as in the electron double-wire case) since the ground-state-energy
minimum is less noticeable than those in the other approximations. This once again shows
that the effects of correlations are more important in electron–hole double wires than those
in electron systems. We observe that departures from the RPA and Hubbard-approximation
results become significant forrs > 1. In general, the ground-state energies are slightly lower
(in magnitude) for the electron–hole double wires. We have also calculated the separation
dependence of the ground-state energy and found no significant dependence ford > 8a∗B
in R = 2a∗B double-wire systems. For the smallest wire separations (i.e.d ∼ 4a∗B) our
calculations on electron–electron and electron–hole cases become less reliable, since the
tunnelling effects are not included in the formalism that we use. Thus we believe that
a more complete theory would address the problem of the separation dependence of the
ground-state energy better.

Figure 6. (a) The plasmon dispersions in a double-wire electron system withR = 2a∗B and
d = 5a∗B at rs = 2. (b) The plasmon dispersions in a double-wire electron–hole system in the
long-wavelength approximation atrs = 1. In both cases dashed and solid lines stand for the
RPA and STLS approximation results. The shaded regions indicate the single-particle excitation
regions.

Collective excitations in a double-wire electron gas when correlation effects are included
are obtained from the solution of the screening function

ε(q, ω) = [1− V11(q)[1−G11(q)]χ
0
11(q, ω)

] [
1− V22(q)[1−G22(q)]χ

0
22(q, ω)

]
− [

V12(q)[1−G12(q)]
]2
χ0

11(q, ω)χ
0
22(q, ω) = 0 (9)
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in which we use the disorder-free response functionsχ0
ii (q, ω). In the case of an equal-

density double-wire electron system (withV11 = V22, G11 = G22 and χ0
11 = χ0

22) the
plasmon dispersions are given by [4, 23]

ω2
pl(q) =

ω2
+ eA±(q) − ω2

−
eA±(q) − 1

(10)

whereω± = |q2/2m∗ ± qkF /m∗| define the boundaries of the single-particle excitation
region, andA±(q) = (πq/m∗)/[V11(1− G11) ± V12(1− G12)]. The ± signs refer to in-
and out-of-phase oscillations of the charges, and the collective excitations are labelled as
the optical and acoustic plasma modes, respectively, according to their long-wavelength
behaviour. The long-wavelength limit of the plasmon dispersions (in the RPA) in double-
wire electron systems was discussed by Li and Das Sarma [4] and by Gold [8]. We show
the effects of exchange and correlation described by the local-field factors on the plasmon
dispersion of a double-wire electron system in figure 6(a). The number density in each
wire is characterized byrs = 2, and we takeR = 2a∗B andd = 5a∗B . The solid and dotted
lines indicateωpl(q) with and without (the RPA) the local-field corrections, respectively.
The upper and lower (optical and acoustic) plasmon branches merge together at a finite
wave-vectorqc, and approach the upper boundary of the particle–hole boundary much more
quickly, since the local fields tend to soften the plasmon dispersions. As the separationd

between the wires decreases, the interwire correlation effects become more important and
the critical wave-vectorqc decreases.

In the case of electron–hole double quantum wires, the full collective excitations are
obtained by solving equation (9) numerically. The long-wavelength limits of the dispersion
relations are calculated similarly to the 2D and Q1D, two-component electron liquid cases
[30]. The difference here is that electron and hole wires are spatially separated. The optical
plasmons exist in the region above the single-particle continuum of electrons. We obtain
the optical plasmon mode dispersion in the long-wavelength limit as

[ωop
pl (q)]

2 = B

2
+
(
B2

4
− C

)1/2

(11)

where

B =
(

16rs
π2

)
q2

ρ

[
F11(1−G11)/ρ + F11(1−G22)

]
and

C =
(

16rs
π2

)2
q4

ρ3

[
F 2

11(1−G11)(1−G22)− F 2
12(1−G12)

2
]
.

In the above expressions, we measure the plasmon energy in terms of the Fermi energy of
the holes (EFh = k2

F /(2m
∗
h)), ρ = m∗e/m∗h, and we also writeV11(q) = e2F11/(2ε0), etc.

Since the mass ratio 1/ρ � 1, equation (9) admits another solution (acoustic plasmons)
for energies above the single-particle continuum of holes, and below the single-particle
continuum of electrons. We calculate the long-wavelength dispersion of acoustic plasmons
to be

[ωac
pl (q)]

2 = ω2
+eA

′/B ′ − ω2
−

eA′/B ′ − 1
(12)

where

A′ = 1− F11(1−G11)

(
2rs
π2

)
2

q
ln

∣∣∣∣ω−ω+
∣∣∣∣
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and

B ′ = F11(1−G22)

(
2rs
π2

)
1

ρq

− [
F 2

11(1−G11)(1−G22)− F 2
12(1−G12)

2
] (2rs

π2

)2 2

ρq2
ln

∣∣∣∣ω−ω+
∣∣∣∣.

Figure 6(b) shows the optical and acoustic plasmon dispersions calculated using the above
long-wavelength expressions in an electron–hole double-wire system atrs = 1 in which the
plasmon energies are scaled with respect to the hole Fermi energyEFh = ρEF . The RPA
and STLS approximation results are plotted as the dashed and solid lines, respectively. It is
interesting to note that the acoustic plasmon is affected more by the local-field effects than
the optical plasmon.

In this work we have mainly considered equal-density double-wire systems.
Experimentally, attaining exactly the same density in each wire in realistic systems may be
difficult. Our method can easily be generalized to include such cases. It is expected that the
collective modes of an unequal-density system will have qualitatively different properties
from the modes in identical wires. The semiconducting quantum wires realized so far and
used in the experiments are typically characterized by densities ofrs ∼ 1. It is, however,
conceivable that structures having lower densities can be manufactured with advances in
growth technology [31]. The many-body effects discussed here would then be more readily
applicable to the experimental realizations. CDW-type instabilities discussed in the context
of double-quantum-well structures [23] and also in double quantum wires [21, 22] could
be explored. We have not systematically calculated the static response functionsχ±(q, 0)
(obtained by diagonalizing the response matrix with elementsχij given in equation (1)) for
a wide range of parametersR, d, andrs , but surmise that interesting features of the CDW
instability could be studied using our local-field factors.

4. Summary

In summary, we have studied the ground-state correlations in Q1D electron and electron–
hole systems in double-quantum-wire structures interacting via a Coulomb potential in the
self-consistent scheme of Singwiet al [15]. The local-field corrections describing exchange
and correlation effects provide an improvement over the RPA results. The ground-state
energy is calculated as a function of carrier density in the wires and wire separation.
We found that Q1D electron gas, which occurs in semiconducting quantum wires, shows
similar behaviour qualitatively to that found in 2D and 3D cases. The collective modes in
double-wire systems, in particular electron–hole wires, exhibit a rich structure which could
be probed in Raman-scattering-type experiments. We provided expressions for the long-
wavelength limits of the plasmon dispersion in electron–hole double quantum wires which
could be useful for such studies. Our results should be qualitatively the same for different
models of quantum-wire structures, provided that the asymptotic forms of the Coulomb
interaction are compatible in the sense discussed by Fantoni and Tosi [28].
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[2] Goñi A R, Pinczuk A, Weiner J S, Calleja J M, Dennis B S, Pfeiffer L N and West K W 1991Phys. Rev.
Lett. 67 3298
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